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Abstract: A cognitive radio network improves the spectrum utilization. In this paper, we present a distributed 

algorithm for scheduling and spectrum allocation, they maximize the networks throughput. During each time 

slot, the scheduling and spectrum allocation problems selecting a subset of links to be activated, and allocate 

the available resources to these links. This problem is considered as an aggregate utility maximization problem. 

The queuing analysis used to characterize the throughput and delay performance of the network and throughput 

is maximized by Lagrangian duality theory. The problems are divided into a set of sub problems that can be 

solved locally by using dual decomposition framework, & it allows us to develop distributed algorithm.  

Keywords: cognitive radios, distributed algorithm, lagrangian duality theory, Resource allocation.  

 

I. INTRODUCTION 
Cognitive radio is a radio that is able to sense the spectral environment over wide frequency band & 

exploit this information to opportunistically provide wireless links that best meet the user communication 

requirements. In CR networks two users are available. They are primary user & secondary user. It allows SUs to 

utilize spectrum holes left by the primary user without causing any interference to PUs. One of the biggest 

challenges in cognitive radio networks is spectrum sharing, which defines the set of rules and strategies that 

regulate the behaviour of SUs regarding spectrum mobility, allocation, and access. The spectrum sharing 

architectures are centralized and distributed. In centralized network, a centralized entity controls both spectrum 

allocation and access. In a distributed architecture, each SU is responsible for the channel allocation and access 

decisions. The SU may make its decisions based on its local observation of the network and spectrum status or 

by cooperating with other SUs to have a more global observation. The cognitive radio mesh networks are used 

to reduce congestion in traditional WMNs by searching for available channels in the primary band. In [4], three 
different frequency assignment problems are considered. They are common broadcast frequencies, non 

interfering frequencies for simultaneous transmissions, and frequencies for direct source-destination 

communications. However, these algorithms only guarantee non-interfering direct communication between pairs 

of nodes. In [7], bandwidth allocation problem is considered, in which max-min fairness models and heuristic 

algorithms are used. The algorithm requires global information about the network to be collected at a central 

point & it considered only bandwidth allocation problem and not consider any performance measures.  

This paper studies the resource allocation problem in cognitive radio mesh networks. The objective is 

to maximize the end to end throughput of the different traffic streams in the network. The problem is considered 

as an aggregate utility maximization problem, and they provides fairness guarantees among different streams. 

The queuing model enables us to characterize the throughput as well as the delay at each node in the network. 

The non-linear integer programming (NIP) problem is considered as utility maximization problem. By changing 
the integer valued into decision variables. So these cause some problem. These can be avoided by dual 

decomposition of the problem. 

 

II. SYSTEM MODEL 
 The cognitive radio based wireless mesh network model used is shown in Fig. 1. The cognitive mesh 

network consists of M nodes that opportunistically share the spectrum resources with a primary network 

composed of N transmitter-receiver pairs. Each primary user operates its own channel that does not overlap with 

other users’ channels. Therefore, there will be N non-overlapping channels. Furthermore, all primary channels 

have the same bandwidth. We assume that the primary network follows a time-slotted transmission structure. So 
they can start only at the beginning of a time slot. Based on the spectrum sensing techniques, the local channel 

availability can be detected. 
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Fig. 1.Network model. 

 

The network uses hybrid TDMA for channel access. In each time slot, a node selects one of the 

available frequency channels to transmit over. The cognitive network adjusts the boundaries of its time slots and 
matches it with primary network.  

A cognitive mesh node senses its assigned channel cat the beginning of each time slot t. If the channel 

is idle, the node transmits the packet at the head of its queue to the next node along the route to its destination. 

otherwise it remains silent and keeps sensing the channel in subsequent time slots. For simplicity, we will 

assume that cognitive nodes have access to perfect spectrum sensing information. The case of imperfect sensing, 

where SUs can sometimes make false detections, can be easily incorporated into the problem formulation 

similar to the model. After the successful transmission, the receiving node sends ACK packet to source node. 

The cognitive mesh network is modelled as a directed graph G(V,E), where V is vertex and E is edge. Each 

vertex v∈V corresponds to a cognitive mesh node. An edge e ∈ E exists between nodes u and v if there exists a 

channel c and the nodes are within transmission range of each other.  

  

2.1 Queuing Model  

Rayleigh flat fading channel with additive white Gaussian noise is taken as the wireless channel 

between a node and its destination. Each node has an infinite buffer for storing packets of fixed length. The 

finite buffers case could also be accommodated into our model with slight modifications to the optimization 

problem.  

         

 

                              

                  

 

Fig.2. Markov chain model. 
 

The primary channels are modelled using a two state Markov chain as shown in Fig. 2. If the channel c 

is idle the Markov chain denotes off state. Otherwise they denotes on state. Node u as the source and they have 

data stream f. The packet arrivals at the source are modelled as a stationary Bernoulli process. 

 

III. QUEUING ANALYSIS 
In queuing analysis, first the arrival and service is calculated. In this we are consider time and channel 

as resource element. 

Arrival rate 

The average arrival and service rates can be calculated using decision variables. The decision variables: 
• yt

f
,
,
c
e=1 if the resource element is allocated to data stream f; otherwise yt

f
,
,
c
e = 0.  

The data stream f enters the queue of node v in a given TDMA frame if: 

1. Time and channel allocated to one of v’s incoming link, 

2. The primary user channel is idle during that time slot  

3. The previous cognitive node in the route has at least one packet in its queue to transmit to node v.  

The joint probability will be: 

av
f =   yf,e

t,c

N

c=1eϵEv
in

λe(S)
f


v
f

 Ie
cαc +  1 − Ie

c   1 − pe
out                                            (1) 

Where Ein
v  is the set of incoming link to node v, e(s) is the source node for link, λe(s)  is its arrival rate 
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and μe s 
f its service rate. The average packet arrival probability will be: 

λv
f = 1/T av

f,t                                  (2)

T

t=1

 

which is interpreted as the probability that a packet from data stream f arrives at node v in any time slot. Given 
this definition, packet arrivals can be seen as Bernoulli trials at each time slot with success probability λf

v. 

Therefore, the packet arrival process can be approximated as a Bernoulli process with average arrival rate λf
v. 

Service rate 

To calculate the average service rate, we start by identifying the events necessary for a successful 

packet transmission. This will take place if in a given time slot t 

1. Channel and time assigned to one of v’s outgoing links, 

2. The primary user channel is either idle during that time slot. 

The joint probability will be: 

sv
f =   yf ,e

t,c

N

c=1eϵEv
in

 Ie
cαc +  1 − Ie

c   1 − pe
out    (3) 

Where Ev
out  is the set of outgoing edges to node v. The average service probability will be: 


v
f = 1/T sv

f,t                                                  (4)

T

t=1

 

which is the probability that a packet from data stream f  leaves the queue of node v in any time slot. Similar to 

the arrival events, the service events can be seen as Bernoulli trials at each time slot with success probability. 

Therefore, the packet service process can be approximated as a Bernoulli process with average service rate. 

 

IV. FORMULATION OF OPTIMIZATION PROBLEM  
First, we consider the utility function. The utility function can be maximized using optimization 

problem then they find resource allocation solution. This can be formulated as follows: 
max_

y
 Uf

f∈F

 
min

v ∈ vf
μv

f                                             (5) 

                                                                          yf,e
t,c ∈{0,1}                                          (6) 

With respect to Constraints are, 

The objective function is to maximize the aggregate utility function for all the traffic streams, where F 
is set of all traffic streams, and Vf  is the set of nodes along the end-to-end path for traffic stream f. If the 

available radios can only access a single channel at any given time slot means they can be modified to 

accommodate multi-channel radios, as well as different capabilities for different nodes. The interfering links are 

allocated distinct resource elements, which avoids interference between mesh nodes during packet 

transmissions. The function provides guarantees to the stability of all the queues in the network. Finally, 

constraint (6) ensures that the decision variable can only take a value of 0 or 1.  

Presence of the min term inside the utility function makes the problem difficult to solve. To simplify 

this, we transform the min term into a set of linear inequality constraints. This transformation simplifies the 

objective function and allows us to use the duality theory to find a decentralized solution. Let 𝐳 = zf , f ∈ F be the 

vector of such decision variables. 

         
max
−
y
−
z

 Uf

f∈F

 zf                                                  (7) 

Then the equivalent optimization problem can be written as,  

                                                      zf<μf
v, ∀f ∈ F, v ∈Vf                                         (8) 

The maximization is now over the two sets of decision variables, yf ,e
t,c

 and zf. Each min term in the 

original optimization problem is now replaced by |Vf| linear inequality constraints. 

 

4.1 Real value to binary value conversion 

The high complexity of the nonlinear integer programming problem can be reduced by using the real 

value to binary value conversion and allow the decision variables to take real values in the interval [0, 1].  

                                                                              yf,e
t,c∈[0, 1],                                       (9) 

This conversion transforms the nonlinear integer program into a convex optimization problem with real 

valued variables. However, the resulting optimal solution for the relaxed problem is not guaranteed to be 

optimal for the original integer-valued problem. 
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Convex function 

A real-valued function f(x) defined on an interval is called convex or convex downward or concave 

upward if the line segment between any two points on the graph of the function lies above the graph, in 
a Euclidean space or vector space of at least two dimensions. Equivalently, a function is convex if 

its epigraph the set of points on or above the graph of the function) is a convex set.  

 
The algorithm starts by defining the set X of all resource elements that are assigned to any of the 

network links. Then the highest assignment probability is found and the corresponding decision variable is set to 

yf,e
t,c

= 1.Given the constraints in IV a set Q of all the resource elements with assignments that conflict with the 

above assignment is defined. All the conflicting assignments are then released, and the set X is updated by 

removing the element (f*, e*,t*,c*) and all elements in Q from X. These steps are repeated till all the elements 

are removed from the set X. 

 

V. DISTRIBUTED CRN NETWORK 
In distributed network calculations are done locally at each node, or at local central points or cluster 

heads is desirable. In this section, we propose a decomposition of the original problem into smaller sub-

problems that can be efficiently solved in a distributed fashion. 

 

5.1 LAGRANGIAN DUALITY THEORY 

The distributed solution approach is based on dual decomposition. The first step is to define the 

Lagrangian function for the optimization problem in (11) as follows 

 L =        μffϵF  zf −   pf,v
1

v∈V f fϵF  zf − μf −            pf ,v
2T

t=1vϵV     yf,e
t,cN

c=1eϵEv
outfϵF − 1 −

           pf,v
3T

t=1      yf ,e
t,c

eϵEv
in +  yf,e

t,c
eϵEv

in  − 1c=1 fϵF  vϵV −            pe,t,c
4    yf,e

t,c
e∈se fϵF −T

t=1vϵVe∈E

         1 fϵFv∈Vfpf,v5λvf−vf                                           (10) 

wherep1
f,v, p

2
v,t, p

3
v,t, p

4
e,t,c,and p5

f,v are the Lagrange multipliers.Where Ef  is the set of edges forming the end-

to-end path for traffic stream f.            

 

L =

          uf zf −  pf ,v
1

v∈V f
 zf − μf −     pf,v

2  yf,e
t,cN

c=1eϵEv
out − 1T

t=1vϵV −fϵF

        vϵVt=1Tpf,v3c=1eϵEvinyf,et,c+eϵEvinyf,et,c−v∈Vft=1Tpf,v3−e∈EvϵVt=1Tpf,v4e∈seyf,et,c−          
e∈EvϵVt=1Tpf,v4−  fϵFv∈Vfpf,v5λvf− vf                                                            (11)                   

From (15) it is concluded that this Lagrangian can be divided into |F| separate sub-problems, one for 

each of the traffic streams in the network. Each sub-problem for stream f can be solved locally if the values of 

the Lagrange multipliers p1
f,v, p

2
v,t, p

3
v,t, p

4
e,t,c, and p5

f,vat each node or link taking part in the routing path for 

stream f are known. 

The dual problem can then be written as: 

 
max min L

  
−
 y

−
z

            (12)  
 

 

5.2 Conversion of convex function into concave function 

The non-differentiable dual objective function appear means, its gradient may not always exist. This is 

because in general, differentiability of the dual requires a unique primal optimizer whereas in our case, the 

optimal values of the variables can be non-unique. Therefore, the well-known gradient-based algorithms do not 

apply in this case. The reason behind the non-differentiability of the dual objective function is the lack of strict 

concavity of the primal objective function. 

Concave function 

A concave function is the negative of a convex function. A concave function is also called concave 

downwards, concave down, convex upwards, convex cap or upper convex. A real-valued function f on 

an interval is said to be concave if, for any x and y in the interval and for any t in [0,1]. 

http://en.wikipedia.org/wiki/Real-valued_function
http://en.wikipedia.org/wiki/Interval_(mathematics)
http://en.wikipedia.org/wiki/Line_segment
http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Epigraph_(mathematics)
http://en.wikipedia.org/wiki/Convex_set
http://en.wikipedia.org/wiki/Additive_inverse
http://en.wikipedia.org/wiki/Convex_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Interval_(mathematics)
http://en.wikipedia.org/wiki/File:ConcaveDef.png
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The solution approach we present here is based on the proximal minimization algorithm. To make the 

primal objective function strictly concave, a strictly concave term is added for each of the variables 

yf,e
t,c

therefore, making the dual function differentiable with respect to all decision variables. For each variableyf,e
t,c

, 

we introduce an additional variable xf,e
t,c

anddefinex as the vector containing these variables.  

The approximate primal objective function is now written as: 

max
−
y
−
z
−
x

 Uf

f∈F

 zf −     
1

2K

N

c=1

T

t=1eϵEv
outfϵF

 yf,e
t,c−xf,e

t,c                    (13)   

Subject to constraints in IV. Since the primal objective function is now strictly concave, the dual is 

differentiable, and the gradient of L1 with respect to the different Lagrange multipliers. Applying the gradient 
projection method, the Lagrange multipliers are calculated iteratively. Then the decision variables are 

determined. 

 

5.3 Algorithm implementation in distributed network 

The proximal approximation algorithm can be implemented in a real network in the following way. At 

the ith iteration, any node v updates the Lagrange multipliers associated with itself and with all outgoing links. 

Then, using the updated multipliers, node v calculates the resources allocated to each of its outgoing links. 

Each node will need to identify all the nodes are within its interference range by using hello protocol. At each 

iteration, information exchange between nodes can be classified into 4 categories as follows; 

1) Each node broadcasts its resource allocation solutions to all nodes within interference range.  

2) The last node in any given route forwards its p1
f,v value to the next node on the backward path 

towards the source node. Subsequent nodes on that backward path add their own p1
f,v value to the value received 

from preceding nodes and then forward the sum to the next node towards the source. 

3) Each node forwards its p3
v,tvalue to the next node along the backward path towards the source node. 

Transmission of p3
v,t and accumulated p1

f, values can be combined into a single packet transmission at each 

node, since both values are propagated in the backward path. 

4) Once the source calculates zf , this value is transmitted propagated along the forward path from the 

source towards the destination. 

 

VI. RESULTS 

 
Performance of the proposed resource allocation algorithm is compared with uniform resource and 

max-min bandwidth allocation (MMBA) algorithm. In uniform resource allocation the resources are uniformly 

distributed. In fig 4 it is clear from the figures that our proposed scheme is able to support the secondary nodes 

traffic at lower primary channels idle probability compared to the two other schemes. 

 

 
Fig. 3(a) Number of secondary nodes vs. average secondary throughput 

 

 
Fig. 3(b) Number of secondary nodes vs. secondary end-to-end delay 
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Fig. 4(a) PUs idle probability vs. secondary throughput 

 

 
Fig. 4(b) Primary users idle probability vs. average secondary end-to-end delay. 

 

In Fig. 5(a), it is noted that the proposed resource allocation algorithm outperforms than both the 

MMBA and the uniform allocation schemes, in the case of 1 traffic stream, and the case of 3 traffic streams. 

Moreover, to accommodate the 3 traffic streams, the MMBA and uniform allocation schemes require 5 
channels, while the proposed schemes requires only 4.  

 

 
Fig. 5(a) Number of primary channels Vs average secondary throughput. 

 

The end-to-end delay performance as a function of the number of primary channels in Fig. 5(b).For 
instance, there is a 20% decrease in the average delay for the proposed algorithm compared to uniform 

allocation, and 12% decrease compared to MMBA.  

 

 
Fig. 5(b) Number of primary channels vs. SUs end-to-end delay 
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Fig.6. Secondary arrival rate on secondary end-to-end delay 

 

For instance, with 5 channels our scheme is able to support all the 5 traffic streams, while the MMBA 

scheme can support 4 streams and the uniform scheme supports only 3 streams in fig 7.  

 

 
Fig.7. Number of traffic streams vs. secondary end-to-end delay. 

 

The effect of the delay constraint parameter d on the network’s performance is depicted in Fig.8 the 

network has 15 secondary nodes. It is noted that the achievable throughput by the secondary nodes is almost 

unaffected by the delay constraint. 
 

  
Fig.8. Delay constraint parameter vs. avg. secondary throughput. 

 

VII. CONCLUSION 

 
Utility maximization problem is considered as throughput maximization problem in cognitive radio 

based WMNs. The utility function provides a degree of fairness among different streams. The resource 

allocation problem in centralized network was decomposed into a set of sub-problems. The resource allocation 

problem was decomposed into a set of sub-problems. Then the problems are locally solved. The proposed 

algorithm improves the throughput of the network. Results demonstrate the efficiency of the proposed 

decentralized solution scheme, adapt varies network loads. Performance gains of the proposed method are 

compared with uniform and max-min band-width allocation. The proposed method accommodates more traffic 

streams and they increases throughput and decreases delay compared to other algorithm. 
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